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1. Introduction 

Recently, Syn and Chen (1) utilized a small fracture specimen to study the fracture behavior of 

an aluminum/epoxy interface under high rate loading.  The specimen, due to its novel shape, is 

frequently referred to as a “butterfly” specimen, as it mimics a compact four-point bend 

specimen, with suitable dimensions for high strain-rate testing in a Kolsky bar.  Whittie et al. (2) 

utilized a butterfly specimen to examine the fracture toughness of cross-linked epoxies as a 

function of loading rate; the small specimen allowed both servo-hydraulic and Kolsky bar 

testing.  The specimen geometry was further developed by Weerasooriya et al. (3) to study 

fracture behavior of adhesive bonds at low and high rates of loading.  The combined research  

(1–3) allowed determination of fracture energies by examining the load-displacement curve from 

either the servo-hydraulic tester or through traditional split Hopkinson pressure bar (SHPB) bar 

analysis.  However, measurement of fracture toughness through crack-tip opening displacements 

or local strain fields was well outside of the digital image correlation (DIC) system’s resolution 

(2, 3), as the epoxies and adhesives considered were quite brittle and displacements near the 

crack-tip are on the order of 10 m.  Stress intensity factor solutions for butterfly specimens are 

not available in the literature, preventing comparison of the measured fracture energies with the 

expected stress intensity factors at the crack-tip.   

In this work, we sought to derive a stress intensity factor solution for a generalized version of the 

U.S. Army Research Laboratory (ARL) butterfly specimen within the useful range of geometries 

for Kolsky bar use.  The linear elastic stress intensity factor solution that has been investigated in 

this study is the starting point to allow more advanced analysis of viscoelastic, strain-rate, and 

temperature effects that are critically important for many polymeric materials. 

2. Methodology 

The finite element method is widely used to calculate stress intensity factors for various 

geometries that cannot be computed analytically.  We utilized Sandia National Laboratories’ 

Sierra suite of finite element codes (4) to perform quasi-static, implicit solid dynamics, and 

explicit solid dynamics analyses.  The use of Sierra and Department of Defense high-

performance computing assets allowed the completion of a multitude of fully three-dimensional 

(3-D) simulations to explore the effects of specimen geometry, loading magnitudes and rates, 

frictional effects, and numerical resolution on the stress intensity factor. 



 

2 

Computation of the stress intensity factor from finite element results was performed using the    

J-integral (5).  While the J-integral has documented path-dependence for elastic-plastic materials 

(particularly in the plastic zone) (6), the integral is path-independent for the linear and nonlinear 

elastic materials considered here.  This path independence allows the J-integral to be a robust 

calculation of the stress intensity factor, as it does not rely on the numerical solution accurately 

capturing the singularity at the crack-tip.  The J-integral is defined in two dimensions (2-D) as 

 1 ,1( )  ,ji j iJ Wn n u d


    (1) 

where  represents a closed path around the crack-tip, n is the outward normal to , W is the 

strain energy density,  is the Cauchy stress, and u is the displacement.  Note that in equation 1, 

the 1-direction is taken to be along the path of the crack.  To evaluate J, the domain integral 

method (5) is utilized: 

  
A

ijjiQ dAuqWqJ .)( 1,,1,   (2) 

In equation 2, A is a domain that contains both crack faces as part of the boundary, and the 

function q is defined such that q = 1 on the inner boundary of A and q = 0 on the outer boundary.  

Li et al. (5) demonstrated that J = JQ for nonlinear elastic materials; for inelastic materials, JQ is 

an average value of J over paths determined by curves of constant q in the domain (7).  This 

domain integral can be evaluated using standard finite element techniques.  In this work, the 

function q was taken from Carka and Landis (7):  

 ,
io

o

RR

Rr
q




  (3) 

where r is a radial coordinate centered on the crack-tip and Ri and Ro represent the inner and 

outer radii of the annular domain A.  

To test the efficacy of the numerical simulation, an edge-cracked plate loaded in simple tension 

was simulated in Sierra using a plane strain assumption.  The plate, with in-plane dimensions of 

H = 20 mm and W = 10 mm, was simulated with edge cracks of lengths a = 1, 2, and 3 mm.  

Meshes of uniform quadrilateral elements of side lengths a/5, a/15, and a/45 were utilized.  The 

J-integral was evaluated, as described previously, using the domain integral for a variety of radii 

ranging from a/10 to 2a, and all deviated less than 0.5%, thus verifying path independence.  

Recalling that, for a linear elastic material under plane strain deformations, the stress intensity 

factor is related to the J-integral by 

 ,
1 2

J
E

K


  (4) 
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one can compare the J-integral results to published values for the stress intensity factor.  Tada et 

al. (8) give an empirical form for the stress intensity factor of an edge-cracked plate under simple 

tension (to a claimed 0.5% accuracy) of 

 ,382.30710.21556.10231.0122.1(

432





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
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

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

b

a

b

a

b

a

b

a
aKI   (5) 

with a representing the crack length and b representing the plate width.  For the scenario with     

a = 2 mm and b = 10 mm, the finite-element results for the three mesh resolutions are given in  

table 1.  Note the excellent agreement with the published results for the a/15 and a/45 cases.  

Further meshing trials indicated that this mesh resolution needs only to be maintained in a small 

area around the crack-tip, dramatically reducing the number of elements needed for simulation. 

Table 1.  Stress intensity factors for various mesh resolutions. 

Mesh Resolution Calculated KI/(*(a) 
0.5

) Error 

(%) 

a/5 1.445 5.29 

a/15 1.367 –0.44 

a/45 1.360 –0.93 

 

In addition to the quasi-static plane strain case, fully 3-D dynamic simulations were conducted to 

determine the efficacy of using the explicit solver to find stress intensity factors.  The dynamic 

effects were analyzed by evaluating the dynamic J-integral (adding the kinetic energy to the 

strain energy term in equation 1) as a function of time.  Monitoring the individual terms allows 

evaluation of the inertial contributions and time fluctuations.  For ramp loads or pulse-to-plateau 

loadings of sufficiently slow rates, the contribution of the dynamic term is negligible and the low 

strain-rate simulation results are within numerical error of the quasi-static analytical results.  The 

effects of a 3-D specimen are subtle for the problem studied here; the thickness of the specimen 

will determine if the results are closer to plane stress or plane strain.  Giner et al. (9) express a 

path-area independent integral Jx1 as 

 .
)( 1

3

31

11 dA
x
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




   (6) 

Here, JP is the standard line integral used in the 2-D J-integral with path , and JA is an integral 

of out-of-plane stresses over the area A() contained by .  Note that Jx1 is evaluated for a 

position along the crack-tip.  Giner et al. (9) note that JP and JA are a function of the position 

relative to the boundaries and that JA vanishes for infinitesimal .  JP can be evaluated using the 

domain integral method (equation 2).  JA is evaluated as an area integral inside the surface 

bounded by q = 0, with the integration weighted by q (thus giving an average for Ri < r < Ro, for 

the q in equation 3).  For the edge-cracked plate with H = W = 10 mm and a = 2 mm, Jx1 was 

calculated along the thickness direction for specimen thicknesses of 1, 5, 10, 20, and 50 mm; 
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results are plotted normalized by the thickness D in figure 1.  The centerline value of Jx1 

transitions from values close to the plane stress value of J at D = 1 and 5 mm to values close to 

the plane strain value at D = 20 mm.  Also note that there are distinct differences between the 

edges of specimens and the centerline, which should be considered when conducting analyses on 

surface-based measurements.  That said, utilizing the explicit solver on a 3-D problem, with 

sufficiently slow loading and long analysis times, reproduces theoretical results for two 

dimensions.  The ability to utilize the explicit solver allows a common numerical framework to 

be used for the quasi-static testing in this report to the planned high strain-rate simulations, 

similar to prior experiments (1–3). 

 

Figure 1.  Jx1 as a function of axial-coordinate for edge-cracked specimens of thicknesses 1, 5, 10, 20, 

and 50 mm.
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3. ARL Butterfly Specimen 

While the experimental measurement of displacement and force gives overall fracture energy, it 

does so in a specific configuration that is not readily generalized.  Prior research into similar 

geometries (1) utilizes the stress intensity factor for a four-point bending specimen without 

testing its efficacy for this particular nonstandard geometry.  We sought to find a more accurate 

representation of the stress intensity factor, parameterized for a generalized version of this 

geometry, utilizing the finite element method.   

Shown in figure 2, the generalized version of this geometry has the following parameters:  an 

overall height H and thickness D, normal distance from the centerline to the upper contact point 

L1, normal distance from the centerline to the upper contact point L2, crack root distance a0, and 

overall crack length a.  Note that the radii of the upper and lower contact surfaces are equal to L1.    

 

Figure 2.  Generalized geometry for butterfly bending specimen.
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3.1 Numerical Setup for Butterfly Specimen 

The butterfly specimen was developed as a simple way to produce a mode-I crack utilizing 

displacement-controlled compression tests, particularly for high strain-rate loading.  Here, the 

effort was to characterize the fracture toughness of a brittle epoxy with a stiffness of 2.2 GPa and 

Poisson’s ratio of 0.3.  Numerically, we examined the compression of a 20-mm-deep (D) 

specimen with metallic platens 25 mm in diameter and 6.35 mm thick.  Recognizable factors that 

are not based on the specimen geometry and displacement amplitude arise in the numerical 

simulations:  mesh resolution, loading history, platen material, and frictional effects.  To 

ascertain the effects of these factors, a standard geometry was selected (L1 = 1.7 mm;                 

L2 = 4.15 mm; H = 13.49 mm; a0 = 2.97 mm; a = 4.1 mm; crack is 0.3 mm wide with a rounded 

nose) and a set of parametric studies was conducted.   

Initial simulations were conducted with steel (E = 200 GPa;  = 0.29) platens with a Coulomb 

friction coefficient of 0.001 on the standard geometry.  It was found that a small friction 

coefficient was necessary to prevent small asymmetries from causing significant slip.  The 

specimen was meshed with a near-uniform mesh resolution, then refined near the crack-tip and 

the contact areas on both the specimen and platen (in the form of a 3:1 reduction in element side 

length), as shown in figure 3.  It was found that the contact patches needed a certain level of 

refinement to prevent slip-stick issues for larger values of the friction coefficients.  To ascertain 

the effect of loading amplitude on the result, the standard specimen meshed with a resolution of 

0.6 mm was subjected to a displacement-controlled ramp loading from 0 to 1.0 mm of 

displacement in 10 ms.  Computation of Jx1 on the center-plane of the specimen was conducted at 

various times in the simulation, and the load applied to the platens was computed by integrating 

the normal stresses over the platen surfaces.  It was found that the applied load was proportional 

to the square root of Jx1; or, in other words, the load is proportional to the stress intensity factor, 

as shown in figure 4. 
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Figure 3.  Sample mesh for mesh resolution studies. 
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Figure 4.  Square root of Jx1 vs. applied load for the standard butterfly specimen. 

A mesh resolution study was conducted to insure convergence in Jx1 before pursuing further 

parametric studies.  The lower platen was held fixed in the loading direction, with the upper 

platen given a constant velocity of 0.1 m/s.  Thus, the standard mesh shown in figure 3 was 

refined by splitting each node-to-node segment in half (thus producing double the mesh density).  

Results are shown in figure 5.  There is less than a 2% difference between the Jx1
1/2

 profiles at a 

given platen displacement, echoing the results from the edge-cracked tension specimen in section 

3.1 (and an attribute of the nonlocal nature of the J-integral).  This differential is even smaller 

when the results are normalized for a common load or tip displacement.  Further analyses in this 

report are conducted with a mesh resolution of 0.6 mm (overall)/0.2 mm (near crack-tip). 
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Figure 5.  Jx1
1/2

 vs. axial coordinate for a platen displacement of 0.3 mm for standard butterfly 

specimens with mesh resolutions of 0.6 and 0.3 mm. 

Experimentally, aluminum platens are likely to be utilized in a SHPB setup due to their lower 

impedance, which is important to obtain a high signal strength in the dynamic experiments.  

Simulations substituting aluminum (E = 68.9 GPa;  = 0.33) platens gave no appreciable 

differences from those of steel platens. 

3.2 Friction and Specimen Thickness Effects 

The effects of friction were analyzed by loading the standard specimen with steel platens; the 

lower platen was held fixed while the upper platen was given a fixed velocity of 1 m/s.  Friction 

was modeled with a fixed Coulomb friction coefficient between the epoxy and steel ranging 

between 0.01 and 1.  Initial investigation of the standard specimen revealed a nonlinear 

dependence between Jx1 at a given platen displacement and the friction coefficient.  Further 
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investigation demonstrated that the specimen thickness D and the friction coefficient combined 

to give a complicated effect on Jx1.  Figure 6 shows Jx1
1/2

 on the center-plane of the specimen vs. 

the friction coefficient for specimen thicknesses of 5, 10, 20, 25, and 40 mm, at a platen 

displacement of 0.3 mm.  Even when renormalizing the specimens to a common  

 

 

Figure 6.  Square root of Jx1 at the center-plane vs. friction coefficient for several specimen 

thicknesses. 

load-per-unit-length, the results were difficult to interpret.  Careful examination of the simulation 

data revealed that the displacement difference between the lower and upper tips of the specimen 

(2 – 1) was a more direct indication of the actual load state of the crack-tip.  This observation is 

not entirely surprising; the displacement difference is directly related to the bending moment 

applied to the specimen and, thus, the load at the tip.  Figure 7 shows Jx1
1/2

 at the specimen 

center-plane as a function of the tip displacement difference for various platen displacements 

(0.1 to 0.6 mm), specimen thicknesses (5 to 50 mm), and friction coefficients (0.01 to 1.0).  Note 

the excellent linear correlation (R
2
 > 0.99) between the tip displacement difference and Jx1

1/2
. 
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Figure 7.  Square root of Jx1 at the center-plane for various specimen thicknesses, friction 

coefficients, and platen displacements. 

Specimen thickness is an important consideration when analyzing the data from the simulations.  

Figure 8 shows Jx1 as a function of axial position in the specimen, for several different specimen 

thicknesses, for a friction coefficient of 0.7.  Note that there is a marked difference between the 

thin (e.g., 5 mm) and the thicker (e.g., 40 mm) specimens; this is similar to the plane stress to 

plane strain transition seen in the edge-cracked specimens in section 3.1.  The overshoot near the 

edges of the thicker specimens appears to be a frictional effect—their magnitude is reduced 

greatly for low values of the friction coefficient.  Looking at the center-plane of the specimens, 

there is a clear transition from plane-stress for thinner specimens to plane strain for the thicker 

ones.  Partitioning the data in figure 7 into thin (<20 mm), transitional (20–25 mm), and thick 

(>25 mm) specimens gives figure 9, where one can observe two distinct linear correlations with 

R
2
 > 0.999.  For a given tip displacement difference, the thick correlation ranges from 4.45% to 

5.1% less than the thin correlation, comparing well with the 4.61% predicted for the plane strain 

to plane stress ratio.
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Figure 8.  Jx1 vs. axial position for butterfly specimens of various thicknesses. 
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Figure 9.  Square root of Jx1 at the center-plane for various specimen thicknesses, friction coefficients, and 

platen displacements; data separated into thin (< 20 mm), thick (> 25 mm), and transitional  

(20–25 mm) sets. 

3.3 Butterfly Specimen Geometry  

In order to generate a stress intensity factor function for a generalized butterfly specimen, a large 

number of analyses were conducted utilizing a plane strain formulation and rigid platens with a 

constant friction coefficient ( = 0.4).  These assumptions were made for convenience; the 

discovery of the tip displacements as an effective load (section 3.2) reduced the impact of such 

assumptions, and the significantly smaller computational load of a plane strain problem allowed 

a large number of analyses to be conducted to compute and verify the geometric factors. 
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The stress intensity factor was assumed to have the general form of 

 
 

  (...),
1

6
2/3

gf
H

aM
K I 






  (7) 

where M represents the moment (or here tip displacement differential) and f() and g(…) 

represent functions of nondimensional parameters that characterize the specimen geometry.  This 

functional form is taken from commonly published forms for the stress intensity factor for four-

point bending specimens (8). 

Four nondimensional parameters were selected to parameterize the geometry:   = a/H 

represents the relative crack length, L2/L1 and H/L1 represent geometric factors for the applied 

moment, and a0/H represents the depth of the wide V at the base of the specimen.  There are 

some obvious geometric restrictions ( > a0/H, L2/L1 > 1, and H/L1 > 2), but practical 

considerations and initial numerical trials revealed realistic ranges for the nondimensional 

parameters.  The crack length a must be less than H – L1 (geometrically), but in practice the 

parameter  should be in the range 0.2 <  < 0.5; values outside of this range see crack-tip 

stress-fields affected by the contact stress-fields.  The spread ratio L2/L1 and height ratio H/L1 

have an interdependent relationship for practical bounds.  Small spread ratios and large height 

ratios result in a near-uniaxial compression test rather than the desired four-point-bending-like 

test; practically, L2/L1 must be greater than 1.75 and H/L1 must be less than 12.  The ratio (L2-

L1)/H is a better indicator of this effect.  Bounding this ratio by 0.1 < (L2-L1)/H < 0.5 prevents 

both compression effects and the specimen lateral surfaces from affecting the crack-tip stress 

field.  The base V ratio a0/H was found to have little effect on results as long as it was 

appreciably less than  (a0/H < 0.7 gave good results); values of a0/H approaching  

unsurprisingly gave results resembling a V-notch rather than a sharp crack.   

Initial simulations were conducted with a base geometry of L1 = 2 mm, L2/L1 = 3, H/L1 = 8, and 

a0/H = 2/3*, with variable  to ascertain the effects of  on the stress intensity factor.  Figure 

10 shows the simulation results of a sweep of 0.2    0.4, normalized by the tip displacement 

difference and the factor in equation 7.  The fit shown in figure 10 is of the form 

   ,)1(   ACef  (8) 

where, for this case, C = 0.005912 and A = 7.3045.  The accuracy of the fit is excellent, with  

R
2
 > 0.999.   
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Figure 10.  Normalized stress intensity factor vs.  for L2/L1 = 3 and H/L1 = 8. 

To explore the other geometric effects,  was held constant at 0.3 and L2/L1 and H/L1 were 

varied over the ranges 2 < L2/L1 < 3.5 and 6 < H/L1 < 12.  Unlike previous studies, where tip 

displacement difference was the best indicator of loading, it was found that the fit for the stress 

intensity factor was more accurate with a moment description of 

 
H

LL
M 1122  

 , (9) 

where 2 and 1 are the displacements of the lower and upper tip, respectively.  Note that for a 

constant L2/L1, this simply reduces to the displacement difference and all previous results hold. 
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Further experimentation with parametric functions found that a single function of (L2-L1)/H 

yielded acceptable accuracy, as shown in figure 11.  The functional fit chosen is of the form 

 ),1( 1212







 








 

H

LL
BC

H

LL
g  (10) 

where C = 1.3173 and B = 1.1093.  The fit prediction was ±5% for all simulated points.  Much of 

this error is likely attributable to contact patch discretization differences, as the scatter of a set of 

analyses with identical geometry, but a slightly different local discretization, is on this order of 

magnitude. 

 

Figure 11.  Normalized stress intensity factor vs. (L2-L1)/H. 
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Putting equations 7, 8, and 10 into a single function gives 

 
(1 ) 2 1

3/ 2

6
1  ,

(1 )

A

I

M a L L
K C e B

H H





   
       

 (11) 

where the moment is defined as 

 .11222

H

LL
DEM

 
  (12) 

The E′ in equation 12 is E (Young’s modulus) for plane stress or E/(1-2
) for plane strain.  The 

specimen thickness D is taken to be 1 for 2-D analyses.  The constants in the equation are           

A = 7.3045, B = 1.1093, and C = 2.871 × 10
-8

.  The overall error in this equation is bounded by 

±5%, much of which is numerical setup dependent (when comparing with computed results). 

3.4 Crack Width and Shape Effects 

The crack width and crack tip shape (from  to 0) were held constant with a semicircular crack-

tip and a crack width of wc = 0.3 mm for all of the analyses carried out previously.  The  = 0.3, 

L2/L1 = 3, H/L1 = 8 geometry was simulated with several crack configurations:  (1) crack width 

of 0.3 mm with a round crack-tip, (2) crack width of 0.15 mm with a round crack-tip, and (3) a 

perfect “crack” with zero width and a sharp crack-tip.  The results in these three cases varied by 

a maximum of 2.1% (the comparison of the sharp crack with the widest notch), indicating that 

this effect is small for reasonable values of crack width.  Similarly, for a constant width notch 

with V, semicircular, and square notch tips, the difference was 1.3%, indicating that measuring 

the exact depth of the notch is more critical than the exact notch shape. 

3.5 Validation 

To validate the model, a random number generator was utilized to generate four random numbers 

to describe the geometry within the bounds 1 mm < L1 < 4 mm, 0.2 <  < 0.4, 2 < L1/L2 < 3.5, 

and 6 < H/L1 < 12.  Crack widths were held to be a constant 0.3 mm with a semicircular crack-

tip.  Simulations were conducted for each of the geometries and compared with the analytical 

model.  Results are shown in table 2.  Note that all errors are less than 7%, with three of four 

cases less than 3.5%.  The small  of case 2 likely causes the larger error; this value is at the 

extremum of the calibrated function for f().   

Table 2.  Comparison of analytical and numerical result for validation geometries. 

 

Case No. L1 

(mm) 
 L2/L1 H/L1 

Jx1
1/2

  

(simulation) 

((N.m) 
1/2

) 

Jx1
1/2

 

(analytical) 

((N.m) 
1/2

) 

Error 

(%) 

1 2.982 0.2377 2.3782 7.1056 21.42 20.79 –2.94 

2 3.498 0.2015 2.6785 9.0660 12.57 11.73 –6.69 

3 3.020 0.2734 2.8663 6.1108 27.79 28.71 3.33 

4 2.215 0.3340 2.0311 8.1312 16.45 16.26 –1.11 
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4. Discussion 

The stress intensity factor function given by equation 11 gives a reasonably accurate prediction 

for a linear elastic, brittle material under idealized (2-D) loading.  The use of contact patch 

displacements allows variability in friction coefficients to be accounted for in a straightforward 

way with established DIC techniques that are already a part of the instrumentation suite (2).  For 

brittle materials, such as the epoxies in Whittie et al. (2), equation 11 should provide a 

reasonable estimate of the stress intensity factor at the crack-tip for quasi-statically loaded 

butterfly specimens.  One possible use of this work is to design specimen geometries tailored to 

the properties of new epoxies (stiffness, strength, fracture toughness, etc.). 

The analysis in this work has some limitations.  The linear elastic constitutive relation is, of 

course, a simplification.  Obvious ramifications are the lack of rate effects (strain-rate hardening, 

viscoelasticity, and fracture energy as a function of rate), but it also eliminates local yielding 

from the analysis.  This fact should be considered when designing specimens, as the local 

stresses from the small contact patches can be quite large, leading to yielding at the contact 

points before fracture begins.  Yielding can also occur at the crack-tip before fracture begins, 

although typical plastic-zone techniques developed in the fracture mechanics community can 

compensate for this yielding.  Note that while the finite element analysis includes inertia, the 

loading pulses are long and well conditioned.  When conducting dynamic analyses, care must be 

taken to give the specimen monotonic loading (e.g., through the use of pulse shaping on the 

SHPB), as vibrational modes of the specimen can be excited under other loading types, leading 

to hard-to-interpret results. 

Future extensions of this work will include rate-dependent effects in both the material 

constitutive behavior and the fracture toughness of the material, and application of similar 

analysis for the use of the ARL butterfly geometry to study the fracture behavior in adhesive 

bonds.  Whittie et al. (2) noted that the fracture energy nominally doubled when the loading rate 

was increased from 7 to 70 kN/s.  Whether this change in fracture energy is a result of strain-rate 

hardening, viscoelasticity, or rate dependency of fracture energy remains to be seen.   
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